Resonance structure from chiral EFT and dispersion theory

C. Weiss (JLab), Informal N* Workshop, JLab, 06-Jun-17
based on work with J.M. Alarcon, A. Hiller Blin, C. Granados

Objective: Explain/predict structure of baryons and resonances using model-independent methods of strong interaction physics

- Chiral effective field theory (large-distance dynamics, controlled accuracy, predictive)
- Dispersion theory (analyticity, global properties, spectrum ↔ structure)
- Large-N_c QCD (parametric expansion, $N \leftrightarrow \Delta$, connection with QCD)

Structures

- EM form factors and densities $N \rightarrow N$, $N \rightarrow N^*$, $N^* \rightarrow N^*$
- Other operators: Scalar, axial, twist-2 operators (GPDs)
- πNN^* vertices, $NN \rightarrow NN^*$ amplitudes

Here: Describe methods for $N \rightarrow N$, discuss extension to N^*
Outline

• Baryon EM form factors and densities

 Transverse densities

 Peripheral distances \(b = \mathcal{O}(M_\pi^{-1}) \)

 Dispersive representation

 \(\chiEFT \) calculations — Dispersively improved \(\chiEFT \) (DI\(\chiEFT \))

 \(SU(3) \) flavor extension

 Other operators: Scalar

• Resonance form factors and densities

 Properties of unstable particles

 Interest for resonance structure

• Large-\(N_c \) QCD

 \(N \leftrightarrow \Delta \) connection, spin/flavor components
Form factors and transverse densities

- Current matrix element
 \[\langle N' | J_\mu | N \rangle \rightarrow F_1(t), F_2(t) \]
 invariant FFs

- Transverse densities
 Soper 76, Burkardt 00, Miller 07
 \[F_{1,2}(t = -\Delta_T^2) = \int d^2b \ e^{i\Delta_T b} \ \rho_{1,2}(b) \]
 Fourier
 Charge/magnetization density, spin indep/dep
 Fixed light-front time \(x^+ = x^0 + x^3 = \text{const} \), appropriate for relativistic systems

- Connection with GPDs/QCD
 \[\rho_1(b) = \sum_q e_q \int_0^1 dx \ [q - \bar{q}](x, b) \]
Peripheral densities

- Peripheral densities $b = \mathcal{O}(M_\pi^{-1})$
 - Governed by chiral dynamics: universal, model-independent
 - Calculable using χEFT + dispersion theory

- Theoretical interest
 - Distance as parameter
 - Proper definition of mesonic component
 - Space–time picture of chiral dynamics

- Practical interest
 - Low–$|t|$ form factors, proton size
 - Connection w. peripheral quark/gluon structure
Dispersive representation

- Dispersive representation of form factor

\[
F(t) = \int_{4M^2_\pi}^{\infty} \frac{dt'}{t' - t - i0} \frac{\text{Im} F(t')}{\pi}
\]

“Process” current \rightarrow hadronic states $\rightarrow N \bar{N}$

Unphysical region: $\text{Im} F(t')$ from theory, FF fits
Höhler et al 76; Belushkin, Hammer, Meissner 06; Lorenz et al 12

- Transverse densities

\[
\rho(b) = \int_{4M^2_\pi}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{tb}) \frac{\text{Im} F(t)}{\pi}
\]

$K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Distance b selects masses $\sqrt{t} \sim 1/b$: Filter
Strikman, CW 10; Miller, Strikman, CW 11

Peripheral densities \leftrightarrow low–mass states

Isovector: $\pi \pi, \rho, \rho', \ldots$
Isoscalar: $\omega, \phi, K \bar{K}, \ldots$
Spectral functions

\[I = J = 1 \]

\[t > 4M_\pi^2 \]

\[\text{Im} F_i(t) = \frac{k_{\text{cm}}^3}{\sqrt{t}} \frac{\Gamma_i(t)}{F_\pi(t)} \left| F_\pi(t) \right|^2 \]

- **Elastic unitarity relation**

 Timelike pion FF \(F_\pi(t) \), \(\pi\pi \to N\bar{N} \) partial-wave amplitude \(\Gamma_i \)

 Functions have same phase — Watson’s theorem

 Relation valid up to \(t = 16M_\pi^2 \), in practice up to \(t \sim 1 \text{ GeV}^2 \)

 Includes \(\rho \) as \(\pi\pi \) resonance

- **New \(\chi \text{EFT}-based approach**

 Calculate \(\Gamma_i/F_\pi \) in \(\chi \text{EFT} \) — free of \(\pi\pi \) rescattering, well convergent

 Multiply with \(|F_\pi|^2 \) from \(e^+e^- \) data — includes \(\pi\pi \) rescattering, \(\rho \) resonance

 Version of \(N/D \) method. Many theoretical advantages. Predictive!
Spectral functions II

- Relativistic χEFT

 Expansion in $(M_\pi, k_\pi)/\Lambda_\chi$

 Controlled accuracy, systematic improvement

 π, N, Δ as effective DoF

- Spectral function results

 New method includes $\pi\pi$ rescattering, ρ resonance

 Dramatic improvement over conventional χEFT calculations

 Good convergence in higher orders

 Alarcon, CW, in progress

 Possible to compute spectral functions up to ~ 1 GeV2

 Many applications!
Peripheral densities

- Use DIχEFT spectral functions to calculate peripheral transverse densities

- Peripheral isovector densities predicted down to $b \sim 1$ fm with controlled accuracy
 Isoscalar densities from empirical parametrization with ω, ϕ

- Peripheral nucleon structure can be computed from first principles!

 Alarcon, Blin, Vicente Vacas, CW, 2017
SU3 flavor extension

- DI\chi EFT extended to $SU(3)$ flavor

- $\pi\pi$ spectral functions of octet baryon FFs $K\bar{K}$ negligible at peripheral distances

- Peripheral densities of octet baryons, quark flavor separation $u/d/s$

Alarcon, Blin, Vicente Vacas, CW, 2017
Present directions

- Higher-order corrections in DIχEFT
 Alarcon, CW, in progress. See also Granados, Leupold, Perotti 2017.

- Nucleon FFs of scalar operators, EM tensor — nucleon mass and spin

- Anomalous threshold effects in FFs and densities

- Extension to $N \rightarrow N^*$ and $N^* \rightarrow N^*$ FFs
 Alarcon, Blin, CW in progress
• Structure of unstable particle

S-matrix theory: Stable-particle amplitude $\pi N \rightarrow \pi N$, Δ as pole in 2-particle channels $s_{1,2} = M^{2}_{\Delta}$ complex, residue factorizes

Resonance structure defined at complex pole

Can be implemented in χEFT

Ledwig et al 10

• Form factors and densities of Δ isobar

New spin structures because of $S = \frac{3}{2}$

Lorce 09

LQCD results

Alexandrou et al 08; Aubin, Orginos, Pascalutsa, Vanderhaegehen 08
Large-N_c limit of QCD

- Study scaling behavior of non-perturbative QCD quantities with N_c:
 Meson and baryon masses, current matrix elements, hadronic couplings, ...
 'tHooft 73, Witten 79

 N_c scaling can be established on general grounds
 Parametric classification, hierarchy of structures, qualitative insight
 Very successful phenomenology
 $N_c \to \infty$ corresponds to semiclassical limit of QCD

- Great potential for resonance physics

 $M_N, M_\Delta = \mathcal{O}(N_c), M_\Delta - M_N = \mathcal{O}(N_c^{-1})$

 $g_{\pi N\Delta} = \frac{3}{2} g_{\pi NN}$

 $\langle B'|J^\mu|B\rangle = \text{common function}$

 N, Δ almost degenerate
 Pion couplings simply related
 N and Δ current MEs related

- χEFT results have correct N_c-scaling if Δ isobar included as dynamical DoF
 Cohen, Broniowski 90’s. Transverse densities and GPDs: Strikman CW 04/09/11, Granados, CW 13
Summary

- Model-independent methods have much to contribute to understanding resonance structure and production mechanism

 Chiral effective field theory
 Dispersion theory
 Large-N_c QCD

- Peripheral baryon structure can be computed with controlled accuracy by combining χEFT and dispersion theory (DIχEFT)

- Extension to resonance structure in progress