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Pentaquark Summary

•  Existence or otherwise is a CRUCIAL question in

 strong interaction physics

•  Wilczek, Jaffe: That we cannot say whether such

   such exotica exist or not shows HOW LITTLE WE

   UNDERSTAND NON-PERTURBATIVE QCD

•  Jefferson Lab

  is the ideal

  facility to

  definitively

  answer this

  question!

“quarks”“hadrons”
?

Duality hypothesis:  complementarity between 
quark and hadron descriptions of observables

∑

hadrons

=

∑

quarks

can use either set of complete basis states
to describe physical phenomena

energy
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distance
short

energy
low

distance
long



In practice, at finite energy typically have 
access only to limited set of basis states
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Question is not why duality exists,
but how it arises where it exists,
and how can we make use of it?
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Duality in hadron-hadron scattering

Igi (1962)
Dolen, Horn, Schmidt (1968)

“s-t channel duality”



“Bloom-Gilman duality”
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Duality in electron-nucleon scattering

Bloom, Gilman (1970)
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.
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Duality in electron-nucleon scattering

deep inelastic
function

≈
2

average over resonances
(strongly Q  dependent)2

Q   independent
scaling function



F2(x, Q2) = x
∑

q
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q
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In deep-inelastic region (                                    )
structure function given by parton distributions 

W & 2 GeV, Q2 & 1 GeV2
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In resonance region (                ), or at low      (                  )
can no longer resolve individual quark structure

W . 2 GeV Q2 Q2 . 1 GeV2

Resonance and DIS regions intimately connected
resonances an integral part of scaling structure function

Duality in electron-nucleon scattering

e.g.  in large-N  limit, spectrum of zero-width resonances is 
“maximally dual” to quark-level (smooth) structure function

c

LO



Scaling functions from resonances

Earliest attempts predate QCD

e.g. harmonic oscillator spectrum
including states with spin = 1/2, ..., n+1/2
(n even:  I = 1/2,    n odd:  I = 3/2)

M2
n = (n+ 1)�2

at large Q   magnetic coupling dominates2
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(1 +Q2r2/M2
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Domokos et al. (1971)



�n ! 0in             limit

cf.  Drell-Yan-West relation

F2 ⇠ (µ2
1/2 + µ2

3/2)
(�0 � 1)3

(�0 � 1 + r2)4

similar behavior found in many models
Einhorn (1976)   (‘t Hooft model)
Greenberg (1993)   (NR scalar quarks in HO potential)
Pace, Salme, Lev (1995)   (relativistic HO with spin)
Isgur et al. (2001)   (transition to scaling)

....
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Scaling functions from resonances



Phenomenological analyses at finite Q2

additional constraints from threshold behavior at
and asymptotic behavior at 
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Scaling functions from resonances

Davidovsky, Struminsky (2003)



valence-like structure of dual function suggests
“two-component duality”:

valence (Reggeon exchange) dual to resonances

sea (Pomeron exchange) dual to background F

(sea)
2 ⇠ x

�0.08

F

(val)
2 ⇠ x

0.5

Phenomenological analyses at finite Q2

Scaling functions from resonances



Scaling functions from resonances

Explicit realization of Veneziano & Bloom-Gilman duality
q

p
X
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= =
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R = Res

Veneziano duality

Res

V (s, t) =
�(1� ↵(s))�(1� ↵(t))

�(2� ↵(s)� ↵(t))

high s, low |t|! s↵(t)Veneziano model not unitary,
has no imaginary parts

generalization of narrow-resonance approximation, 
with nonlinear, complex Regge trajectories
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“dual amplitude with Mandelstam analyticity” (DAMA) model
Jenkovszky et al.



Scaling functions from resonances

Explicit realization of Veneziano & Bloom-Gilman duality

for large x and Q  , have power-law behavior2

Jenkovszky, Magas, Londergan, 
Szczepaniak (2012)

F2 ⇠ (1� x)2↵t(0) ln 2g/ ln g

where parameter    can be Q   dependentg 2



Duality and QCD

Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)
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Operator product expansion

expand moments of structure functions in powers of 1/Q2

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin

(a) (b) (c)

τ = 2 τ > 2



Duality          suppression of higher twists

Duality and QCD

If moment      independent of Q≈
2

“higher twist” terms            smallA(�>2)
n

Operator product expansion

Mn(Q2) =
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expand moments of structure functions in powers of 1/Q



Truncated moments of       in resonance region

higher twists  < 10-15%  for Q2 > 1 GeV
2

F p
2

Malace et al. (2009)

(W < 2 GeV)



On average, nonperturbative interactions between
quarks and gluons not dominant (at these scales)

nontrivial interference between resonances

Resonances & twists

Total “higher twist” is small at scales Q2 � O(1 GeV2)

Can we understand this dynamically,  at quark level?
is duality an accident?

expanded data set has potentially significant 
implications for global quark distribution studies

Can we use resonance region data to learn about
leading twist structure functions (and vice versa)?



low energy
coherent scattering from quarks dσ ∼

(

∑

i

ei

)2

dσ ∼

∑
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e
2

i

high energy

incoherent scattering from quarks

Consider simple quark model with spin-flavor symmetric 
wave function

how can square of a sum become sum of squares?

For duality to work, these must be equal



e.g. for toy model of two quarks bound in a harmonic 
oscillator potential, structure function given by

F (ν,q2) ∼

∑

n

∣

∣G0,n(q2)
∣
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2
δ(En − E0 − ν)

Dynamical cancellations

charge operator                           excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength

resulting structure function
F (ν,q2) ∼

∑

n

{

(e1 + e2)
2 G2

0,2n
+ (e1 − e2)

2 G2
0,2n+1

}

if states degenerate, cross terms               cancel when 
averaged over nearby even and odd parity states 

(⇠ e1e2)

Close, Isgur (2001)



duality is realized by summing over at least one 
complete set of even and odd parity resonances

in NR Quark Model, even & odd parity states generalize
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

Dynamical cancellations

Close, WM (2003, 2009)

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

(anti) symmetric component of ground state wave function� (⇢) =



cat’s ears diagram  (4-fermion higher twist ~        )    1/Q2
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Accidental cancellations of charges?

should not hold for neutron !!

proton

neutron

HT � 1 �
�
2� 4

9
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1
9

�
= 0 !

HT � 0 �
�4

9
+ 2� 1

9

�
�= 0

Brodsky  (2000)

duality in proton a coincidence!



Malace et al. (2010)

Neutron:  the smoking gun

Duality in neutron more difficult to test because of 
absence of free neutron targets

New extraction method (using iterative procedure for solving

integral convolution equations) allowed first determination
of       in resonance region & test of neutron dualityFn

2

F
2



“theory”:  global QCD fit to
 W > 2 GeV data

globally, violations < 10%

locally, violations of duality in
resonance regions < 15-20%
(largest in     region)�

duality is not accidental, but a general feature
of resonance-scaling transition!

Neutron:  the smoking gun

use resonance region data to learn about
leading twist structure functions?



Global QCD analysis of high-energy scattering data,
including large-x, low-Q  region2

Systematically study effects of Q   & W cuts2

CTEQ-JLab (CJ) global PDF analysis

cut0:
cut1:

cut2:

cut3:

Q2 > 4 GeV2, W 2 > 12.25 GeV2

Q2 > 3 GeV2, W 2 > 8 GeV2

Q2 > 2 GeV2, W 2 > 4 GeV2

Q2 > m2
c , W 2 > 3 GeV2

factor 2 increase
in DIS data from
cut0     cut3

x x

larger database with weaker cuts
gives significantly reduced errors,
especially at large x

up to ~ 40-60% error reduction
when cuts extended into
near-resonance region



significant reduction of
PDF errors with new
JLab tagged neutron & 
FNAL W-asymmetry data

extrapolated ratio at x = 1
d/u ! 0.09± 0.03

upcoming experiments at JLab
(MARATHON, BONuS, SoLID) will 
determine d/u up to x ~ 0.85
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+ BONuS

+ ` asym (& Z rap)

+ W asym
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helicity

scalar

DSE

Valence d/u ratio at high x

CTEQ-JLab (CJ) global PDF analysis

Accardi et al. (2016)

qq



Confirmation of duality (experimentally & theoretically) suggests
origin in dynamical cancelations between resonances

use resonance region data to constrain PDFs at high x
Practical application of duality

explore more realistic descriptions based on
phenomenological            form factors �⇤NN⇤

incorporate nonresonant background in same framework

Extend quark-hadron duality concept to e.g. electroproduction

application to semi-inclusive DIS,  DVCS / GPDs, ...

Outlook





Extend duality to less inclusive processes, such as 
meson electroproduction

parton level scattering
and fragmentation

γ∗
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N*

M

X

N

=
N*,N’* q, X
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Σ

2*

1
21
*

Duality in (semi-inclusive) meson production

s-channel resonance 
excitation and decay
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Duality in exclusive reactions

Exclusive-inclusive correspondence principle:
continuity of dynamics from one (known) region
to another (poorly known)

Z p
max

p
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�M2

X/4p
max

dp E
d3�

dp3

����
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⇠
X
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E
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����
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resonance contribution to     
should be comparable to the
continuum contribution extrapolated from high energy
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